Школа-лицей № 1 акимата города Экибастуза, г. Экибастуз
Школа-лицей № 6 акимата города Экибастуза, г. Экибастуз
ГУ СОШ №9 акимата города Экибастуза, г. Экибастуз
Инновационный Евразийский Университет, г. Павлодар
Эта статья опубликована сборнике научных трудов "Проблемы и перспективы современной науки" с материалами Четвертой Международной Телеконференции "Фундаментальные науки и практика" - Том 3 - №1. - Томск - 2011.
Основными источниками загрязнений нефтью и нефтепродуктами являются добывающие предприятия, системы перекачки и транспортировки, нефтяные терминалы и нефтебазы, хранилища нефтепродуктов, железнодорожный транспорт, речные и морские нефтеналивные танкеры, автозаправочные комплексы и станции. Объемы отходов нефтепродуктов и нефтезагрязнений, скопившиеся на отдельных объектах, составляют десятки и сотни тысяч кубометров. Значительное число хранилищ нефтешламов и отходов, построенных с начала 50-х годов, превратилось из средства предотвращения нефтезагрязнений в постоянно действующий источник таких загрязнений.
Наиболее широко распространенными загрязнителями сточных вод являются нефтепродукты – неидентифицированная группа углеводородов нефти, мазута, керосина, масел и их примесей, которые вследствие их высокой токсичности, принадлежат, по данным ЮНЕСКО, к числу десяти наиболее опасных загрязнителей окружающей среды. Нефтепродукты могут находиться в растворах в эмульгированном, растворенном виде и образовывать на поверхности плавающий слой.
Основные вопросы защиты окружающей среды необходимо решать на основе следующих принципов:
• форма и масштабы человеческой деятельности должны быть соизмеримы с запасами невозобновляемых природных ресурсов;
• неизбежные отходы производства должны попасть в окружающую среду в форме и концентрации, безвредных для жизни. Особенно это относится к водным ресурсам.
Природная вода - не только источник водоснабжения и транспортное средство, но и среда обитания животных и растений. Круговорот воды в природе создает необходимые условия для жизни человечества на Земле.
Происхождение воды на земле связано с происхождением самой Земли. Существует две гипотезы образования воды на Земле. В первом случае это существование готовых молекул воды в газопылевом облаке, из которого произошла Земля и которое наблюдается в кометах и метеоритах сегодня. Во втором случае вода образовалась из водорода и кислорода после конденсации газопылевого облака в планету Земля. Впоследствии при повышении температуры недр Земли и их дегазации, а также в процессе миграции водорода и кислорода из центральной части планеты к периферии и химических реакций образовались молекулы воды.
Происхождение воды, ее первичное образование как растворителя и ее миграция представляют единое целое в изучении природной воды.
Одним из невосполнимых природных ресурсов является нефть, которая в процессе добычи, транспорта, переработки и потребления постоянно соприкасается с окружающей средой и загрязняет ее, особенно воду.
В настоящее время защита окружающей среды от нефтесодержащих сточных вод - одна из главных задач. Мероприятия, направленные на очистку воды от нефти, помогут сберечь определенные количества нефти и сохранить чистым воздушный и водный бассейны. На земном шаре много воды, но чистой пресной воды очень мало. Круговорот воды в природе создает необходимые условия для существования человечества на земле.
Для правильного подхода к решению актуальных задач в области окружающей среды необходимы определенные знания в этой области. Учебные программы, разработанные во многих университетах и институтах можно разбить на две крупные группы:
- решение экологических вопросов в политическом, юридическом, экономическом и других гуманитарных направлениях;
- решение экологических вопросов в техническом аспекте, где решаются общетехнические задачи или частные задачи отдельной или близких отраслей промышленности.
Характеристика загрязненности воды нефтью
Методы очистки сточных вод выбирают в зависимости от их вида: бытовые, промышленные и дождевые.
Сточные воды нефтяной и нефтехимической промышленности содержат нефть, нефтепродукты и различные химические вещества (тетраэтилсвинец, фенолы и др.). Эти сточные воды можно классифицировать следующим образом:
Таблица
1 - Классификация сточных вод.
Сточные
воды
|
Технологические процессы,
связанные с получением сточных вод
|
Методы вторичного использования
вод и извлечение из них полезных веществ
|
Дисперсный состав загрязнителя
|
свободные
и связанные, воды содержащиеся в сырье и исходных продуктах
|
|
нерастворимые
примеси с частицами 10-5 -
10-4 м и более
|
промывные
воды
|
коллоидные
растворы
|
водные
экстракты и адсорбционные жидкости
|
растворенные
газы и молекулярно - растворимые органические вещества
|
охлаждающие
жидкости
|
электролиты
|
технические
воды
|
|
дождевые
и талые воды с территории потенциальных загрязнителей
|
Два первых направления классификации не позволяют систематизировать примеси сточных вод для последующей разработки принципов выбора эффективных систем очистки. Третье направление классификации с этой точки зрения является более подходящим. Его сущность заключается в том, что все сточные воды делятся по дисперсионному составу загрязняющего вещества на четыре группы.
Классификация третьей группы позволяет для каждой из выше перечисленных групп предложить определенные методы очистки воды.
До недавнего времени количество растворенной нефти в воде практически не рассматривали. Современные исследования дают возможность судить о растворимости разных нефтепродуктов в воде в зависимости от различных факторов.
При непродолжительности контакта нефтепродуктов с водой без перемешивания последних количество нефтепродуктов, перешедших в воду, с увеличением времени возрастает. С увеличением контакта от 2 до 120 часов количество нефти в воде возрастает от 0,2 до 1,4 мг/л, дизельного топлива - от 0,2 до 0,8 мг/л, а растворимость бензинов зависит не только от времени, но и от метильных и метиленовых групп углеводородов, входящих в состав бензина. Для метильных и метиленовых групп концентрация бензина А76 в воде при контакте от 2 до 120 часов увеличивается от 1,4 до 11,9 мг/л, а для ароматических углеводородов при тех же параметрах в бензине А76 - от 2,6 до 34 мг/л.
Как следует из предыдущих примеров количество растворенных нефтепродуктов в воде довольно значительно.
Выбор способа очистки нефтесодержащих сточных вод
На нефтетранспортных предприятиях сбор сточных вод и их очистку ведут в зависимости от нефтехимических примесей и способов их очистки. В сточных водах нефтетранспортных предприятий находятся нефть и нефтепродукты, которые после отделения от воды можно использовать в народном хозяйстве. Химические примеси, как, например, тетраэтилсвинец, отделяют специальными химическими методами. В этом случае целесообразно применять раздельный сбор сточных вод и комбинированную систему очистки.
При выборе системы сбора и очистки сточных вод руководствуются следующими основными положениями:
- необходимостью максимального уменьшения количества сточных вод и снижения содержания в них примесей;
- возможностью извлечения из сточных вод ценных примесей и их последующей утилизации;
- повторным использованием сточных вод (исходных и очищенных) в технологических процессах и системах оборотного водоснабжения.
Имея данные по расходам сточных вод, их подробную характеристику, в том числе и по содержанию примесей, а также требования к очищенной воде, по схеме можно отобрать для проверки несколько методов. На основании экспериментальных исследований с учетом технико-экономических показателей выбирают оптимальный метод очистки сточных вод.
Выбор метода очистки сточных вод предприятий зависит от многих факторов: количество сточных вод различных видов, их расходы, возможность и экономическая целесообразность извлечения примесей из сточных вод, требования к качеству очищенной воды при ее использовании для повторного и оборотного водоснабжения и сброса в водоем, мощность водоема, наличие районных или городских очистных сооружений.
Очистка нефтесодержащих сточных вод должна обеспечивать:
- максимальное извлечение ценных примесей для использования их по назначению;
- применение очищенных сточных вод в технических процессах;
- минимальный сброс сточных вод в водоем.
Для очистки сточных вод используют очистные сооружения трех основных типов: локальные, общие и районные или городские.
На нефтебазах и насосных станциях трубопроводов применяют очистные сооружения общего типа, а в случае попадания в сточные воды особо вредных химических веществ - очистные сооружения локального типа. В зависимости от степени очистки сточных вод на очистных сооружениях локального или общего типа и характеристики водоема сточные воды либо направляют на районные или городские очистные сооружения, либо сбрасывают в водоем.
Очистные сооружения локального типа предназначены для обезвреживания сточных вод непосредственно после технологических цехов, имеющих вредные химические вещества, например после резервуарного парка технологических коммуникаций, насосных станций, хранящих и перекачивающих этилированные бензины. Применение таких установок дает возможность избежать необходимости пропускать сточные воды предприятия через установки для извлечения из воды определенных химических веществ.
Очистные сооружения общего типа предназначены для очистки всех нефтесодержащих вод нефтетранспортного предприятия. Обычно эти очистные сооружения включают механическую, физико-химическую и биологическую очистки. К сооружениям механической очистки относятся песколовки, нефтеловушки, отстойники, флотационные и фильтрационные установки и другие. На этих сооружениях удаляют грубодисперсные примеси. К сооружениям физико-химической очистки относятся флотационные установки с применением химических реагентов, установки с применением коагулянтов для коллоидных примесей. К сооружениям биологической очистки относятся аэротенки, биофильтры, биологические пруды и другие.
Для очистки сточных вод применяют реагентные методы: коагуляцию, флокуляцию, осаждение примесей, фильтрование, флотацию, адсорбцию, ионный обмен, обратный осмос и др.
Очистные сооружения районного или городского типа предназначены в основном для механической, физико-химической и биологической очистки сточных вод. Если на эти очистные сооружения направляют производственные сточные воды, то в них не должно быть примесей, которые могут нарушить нормальный ритм работы канализации и очистных сооружений.
Эти производственные воды не должны содержать:
- взвешенных и всплывающих веществ в количестве более 500 мг/л;
- веществ, способных засорять трубы канализационной сети или отлагаться на стенках труб;
- веществ, оказывающих разрушающее действие на материал труб и элементы сооружений канализации;
- горючих примесей и растворенных газообразных веществ, способных образовывать взрывоопасные смеси в канализационных сетях и сооружениях;
- вредных веществ в концентрациях, препятствующих биологической очистке сточных вод или сбросу их в водоем (с учетом эффекта очистки).
Температура этих вод не должна превышать 40 С. Не допускаются залповые сбросы сильноконцентрированных сточных вод.
Методы очистки промышленных сточных вод от нефтепродуктов
Для очистки сточных вод от нефтепродуктов применяют:
• механические;
• физико-химические;
• химические;
• биологические методы.
Из механических практическое значение имеют отстаивание, центрифугирование и фильтрование; из физико-механических – флотация, коагуляция и сорбция; из химических – хлорирование и озонирование. Типовые технологические схемы очистки сточных вод от нефтепродуктов показаны на рисунке 1.
Рисунок 1 – Структурные схемы очистки сточных вод от нефтепродуктов.
Механическая очистка
Механическую очистку сточных вод от нефтепродуктов применяют преимущественно как предварительную. Механическая очистка обеспечивает удаление взвешенных веществ из бытовых сточных вод на 60-65%, а из некоторых производственных сточных вод на 90-95%. Задачи механической очистки заключаются в подготовке воды к физико-химической и биологической очисткам. Механическая очистка сточных вод является в известной степени самым дешевым методом их очистки, а поэтому всегда целесообразна наиболее глубокая очистка сточных вод механическими методами.
Механическую очистку проводят для выделения из сточной воды находящихся в ней нерастворенных грубодисперсных примесей путем процеживания, отстаивания и фильтрования.
Для задержания крупных загрязнений и частично взвешенных веществ применяют процеживание воды через различные решетки и сита. Для выделения из сточной воды взвешенных веществ, имеющих большую или меньшую плотность по отношению к плотности воды, используют отстаивание. При этом тяжелые частицы оседают, а легкие всплывают.
Сооружения, в которых при отстаивании сточных вод выпадают тяжелые частицы, называются песколовками.
Сооружения, в которых при отстаивании загрязненных промышленных вод всплывают более легкие частицы, называются в зависимости от всплывающих веществ жироловками, маслоуловителями, нефтеловушками и другие.
Фильтрование применяют для задержания более мелких частиц. В фильтрах для этих целей используют фильтровальные материалы в виде тканей (сеток), слоя зернистого материала или химических материалов, имеющих определенную пористость. При прохождении сточных вод через фильтрующий материал на его поверхности или в поровом пространстве задерживается выделенная из сточной воды взвесь.
Механическую очистку как самостоятельный метод применяют тогда, когда осветленная вода после этого способа очистки может быть использована в технологических процессах производства или спущена в водоемы без нарушения их экологического состояния. Во всех других случаях механическая очистка служит первой ступенью очистки сточных вод.
Песколовки
Песколовки предназначены для выделения механических примесей с размером частиц 200-250 мкм. Необходимость предварительного выделения механических примесей (песка, окалины и др.) обуславливается тем, что при отсутствии песколовок эти примеси выделяются в других очистных сооружениях и тем самым усложняют эксплуатацию последних.
Принцип действия песколовки основан на изменении скорости движения твердых тяжелых частиц в потоке жидкости.
Песколовки делятся на горизонтальные, в которых жидкость движется в горизонтальном направлении, с прямолинейным или круговым движением воды, вертикальные, в которых жидкость движется вертикально вверх, и песколовки с винтовым (поступательно-вращательным) движением воды. Последние в зависимости от способа создания винтового движения разделяются на тангенциальные и аэрируемые.
Самые простейшие горизонтальные песколовки представляют собой резервуары с треугольным или трапециидальным поперечным сечением. Глубина песколовок 0,25-1 м. Скорость движения воды в них не превышает 0,3 м/с. Песколовки с круговым движением воды изготавливаются в виде круглого резервуара конической формы с периферийным лотком для протекания сточной воды. Осадок собирается в коническом днище, откуда его направляют на переработку или отвал. Применяются при расходах до 7000 м3/сут. Вертикальные песколовки имеют прямоугольную или круглую форму, в них сточные воды движутся с вертикальным восходящим потоком со скоростью 0,05 м/с.
Конструкцию песколовки выбирают в зависимости от количества сточных вод, концентрации взвешенных веществ. Наиболее часто используют горизонтальные песколовки. Из опыта работы нефтебаз следует, что горизонтальные песколовки необходимо очищать не реже одного раза в 2-3 суток. При очистке песколовок обычно применяют переносный или стационарный гидроэлеватор.
Отстойники
Отстаивание - наиболее простой и часто применяемый способ выделения из сточных вод грубо дисперсных примесей, которые под действием гравитационной силы оседают на дне отстойника или всплывают на его поверхности.
Статические отстойники
Нефтетранспортные предприятия (нефтебазы, нефтеперекачивающие станции) оборудуют различными отстойниками для сбора и очистки воды от нефти и нефтепродуктов. Для этой цели обычно используют стандартные стальные или железобетонные резервуары, которые могут работать в режиме резервуара-накопителя, резервуара-отстойника или буферного резервуара в зависимости от технологической схемы очистки сточных вод.
Исходя из технологического процесса, загрязненные воды нефтебаз и нефтеперекачивающих станций неравномерно поступают на очистные сооружения. Для более равномерной подачи загрязненных вод на очистные сооружения служат буферные резервуары, которые оборудуют водораспределительными и нефтесборными устройствами, трубами для подачи и выпуска сточной воды и нефти, уровнемером, дыхательной аппаратурой и т.д. Так как нефть в воде находится в трех состояниях (легко-, трудноотделимая и растворенная), то попав в буферный резервуар, легко- и частично трудноотделимая нефть всплывает на поверхность воды. В этих резервуарах отделяют до 90-95% легко отделимых нефтей. Для этого в схему очистных сооружений устанавливают два и более буферных резервуара, которые работают периодически: заполнение, отстой, выкачка. Объем резервуара выбирают из расчета времени заполнения, выкачки и отстоя, причем время отстоя принимают от 6 до 24 ч. Таким образом, буферные резервуары (резервуары-отстойники) не только сглаживают неравномерность подачи сточных вод на очистные сооружения, но и значительно снижают концентрацию нефти в воде.
Перед откачкой отстоявшейся воды из резервуара сначала отводят всплывшую нефть и выпавший осадок, после чего откачивают осветленную воду. Для удаления осадка на дне резервуара устраивают дренаж из перфорированных труб.
Динамические отстойники
Отличительная особенность динамических отстойников заключается в отделении примеси, находящейся в воде, при движении жидкости.
В динамических отстойниках или отстойниках непрерывного действия жидкость движется в горизонтальном или вертикальном направлении, отсюда и отстойники подразделяются на вертикальные и горизонтальные.
Вертикальный отстойник представляет собой цилиндрический или квадратный (в плане) резервуар с коническим днищем для удобства сбора и откачки осаждающегося осадка. Движение воды в вертикальном отстойнике происходит снизу вверх (для осаждающихся частиц).
Горизонтальный отстойник представляет собой прямоугольный резервуар (в плане) высотой 1,5-4 м, шириной 3-6 м и длиной до 48 м. Выпавший на дне осадок специальными скребками передвигают к приямку, а из него гидроэлеватором, насосами или другими приспособлениями удаляют из отстойника. Всплывшие примеси выводят с помощью скребков и поперечных лотков, установленных на определенном уровне.
В зависимости от улавливаемого продукта горизонтальные отстойники делятся на песколовки, нефтеловушки, мазутоловки, бензоловки, жироловки и т.п. Некоторые типы нефтеловушек представлены на рисунке 2.
Рисунок 2 – Нефтеловушки.
В радиальных отстойниках круглой формы вода движется от центра к периферии или наоборот. Радиальные отстойники большой производительности, применяемые для очистки сточных вод, имеют диаметр до 100 м и глубину до 5 м.
Радиальные отстойники с центральным впуском сточной воды имеют повышенные скорости впуска, что обуславливает менее эффективное использование значительной части объема отстойника по отношению к радиальным отстойникам с периферийным впуском сточных вод и отбором очищенной воды в центре.
Тонкослойные отстойники
Чем больше высота отстойника, тем больше необходимо времени для всплытия частицы на поверхности воды. А это, в свою очередь, связано с увеличением длины отстойника. Следовательно, интенсифицировать процесс отстаивания в нефтеловушках обычных конструкций сложно. С увеличением размеров отстойников гидродинамические характеристики отстаивания ухудшаются. Чем тоньше слой жидкости, тем процесс всплытия (оседания) происходит быстрее при прочих равных условиях. Это положение привело к созданию тонкослойных отстойников, которые по конструкции можно разделить на трубчатые и пластинчатые.
Трубчатые отстойники
Рабочий элемент трубчатого отстойника - труба диаметром 2,5-5 см и длиной около 1 м. Длина зависит от характеристики загрязнения и гидродинамических параметров потока. Применяют трубчатые отстойники с малым (10) и большим (до 60) наклоном труб.
Отстойники с малым наклоном трубы работают по периодическому циклу: осветление воды и промывка трубок. Эти отстойники целесообразно применять для осветления сточных вод с небольшим количеством механических примесей. Эффективность осветления составляет 80-85%.
В круто наклонных трубчатых отстойниках расположение трубок приводит к сползанию осадка вниз по трубкам, и в связи с этим отпадает необходимость их промывки.
Продолжительность работы отстойников практически не зависит от диаметра трубок, но возрастает с увеличением их длины.
Стандартные трубчатые блоки изготовляют из поливинилового или полистирольного пластика. Обычно применяют блоки длиной около 3 м, шириной 0,75 м и высотой 0,5 м. Размер трубчатого элемента в поперечном сечении составляет 5х5 см. Конструкции этих блоков позволяют монтировать из них секции на любую производительность; секции или отдельные блоки легко можно устанавливать в вертикальных или горизонтальных отстойниках.
Пластинчатые отстойники
Пластинчатые отстойники состоят из ряда параллельно установленных пластин, между которыми движется жидкость. В зависимости от направления
Рисунок 3 – Отстойники.
движения воды и выпавшего (всплывшего) осадка, отстойники делятся на прямоточные, в которых направления движения воды и осадка совпадают; противоточные, в которых вода и осадок движутся навстречу друг другу; перекрестные, в которых вода движется перпендикулярно к направлению движения осадка. Наиболее широкое распространение получили пластинчатые противоточные отстойники.
Достоинства трубчатых и пластинчатых отстойников - их экономичность вследствие небольшого строительного объема, возможность применения пластмасс, которые легче металла и не корродируют в агрессивных средах.
Общий недостаток тонкослойных отстойников - необходимость создания емкости для предварительного отделения легко отделимых нефтяных частиц и больших сгустков нефти, окалины, песка и др. Сгустки имеют нулевую плавучесть, их диаметр может достигать 10-15 см при глубине в несколько сантиметров. Такие сгустки очень быстро выводят из строя тонкослойные отстойники. Если часть пластин или труб будет забита подобными сгустками, то в остальных повысится расход жидкости. Такое положение приведет к ухудшению работы отстойника.
Принципиальные схемы отстойников приведены на рисунке 3.
Гидроциклоны
Осаждение взвешенных частиц под действием центробежной силы проводят в гидроциклонах и центрифугах.
Для очистки сточных вод используют напорные и открытые (безнапорные) гидроциклоны.
При вращении жидкости в гидроциклонах на частицы действуют центробежные силы, отбрасывающие тяжелые частицы к периферии потока, силы сопротивления движущегося потока, гравитационные силы и силы инерции. Силы инерции незначительны и ими можно пренебречь. При высоких скоростях вращения центробежные силы значительно больше сил тяжести.
Напорные гидроциклоны
В напорные гидроциклоны вода подается через тангенциально направленный патрубок в цилиндрическую часть. В гидроциклоне вода, двигаясь по винтовой спирали наружной стенки аппарата, направляется в коническую его часть. Здесь основной поток изменяет направление движения и перемещается к центральной части аппарата. Поток осветленной воды в центральной части аппарата по трубе выводится из гидроциклона, а тяжелые примеси вдоль конической части перемещаются вниз и выводятся через патрубок шлама (рисунок 4а).
Промышленность выпускает напорные гидроциклоны нескольких типоразмеров. Для грубой очистки применяют гидроциклоны больших диаметров. Эффективность гидроциклонов находится на уровне 70%.
Гидроциклоны малого диаметра объединяют в общий агрегат, в котором они работают параллельно (рисунок 4б).
Безнапорные гидроциклоны
Одним из технических приспособлений для сбора нефтяной пленки с поверхности воды является безнапорный гидроциклон.
Если в предыдущих конструкциях для вращения жидкости в гидроциклоне применяли подачу воды в гидроциклон по патрубку, расположенному по касательной в цилиндрической части, то в данном случае проводят отсос воды из гидроциклона по патрубку, расположенному по касательной внизу конической части гидроциклона. Такое расположение патрубка дает возможность образовывать внутри гидроциклона вращение жидкости, причем поступление воды из водоема происходит в верхней части гидроциклона.
Собранная с поверхности воды пленка нефтепродуктов, попадая в гидроциклон как более легкая, собирается в центре гидроциклона. По мере увеличения количества нефтепродуктов в гидроциклоне внутри него образуется конус из нефтепродуктов, который, увеличиваясь в размере, достигает нефтяного отборного патрубка, расположенного в центре гидроциклона. Нефтепродукты по этому патрубку сбрасываются в специальные емкости на берегу водоема.
Рисунок 4 – Гидроциклоны.